Intramuscular transplantation and survival of freshly isolated bone marrow cells following skeletal muscle ischemia-reperfusion injury.

نویسندگان

  • Benjamin T Corona
  • Joseph C Wenke
  • Thomas J Walters
  • Christopher R Rathbone
چکیده

BACKGROUND Delayed treatment cellular therapies offer an attractive means to treat extremity injuries involving acute skeletal muscle ischemia-reperfusion injury (I/R). Bone marrow is a rich source of stem and progenitor cells with the potential to improve skeletal muscle regeneration. The extent to which bone marrow cells (BMCs) may be useful for I/R is not known. The purposes of this study were twofold: (1) to evaluate BMC survival following intramuscular injection 0, 2, 7, and 14 days after injury and (2) to determine whether BMCs improve functional recovery following I/R. METHODS Magnetic-activated cell sorting was used to isolate lineage-negative (Lin⁻) BMCs and enrich for stem and progenitor cells. To evaluate in vivo cell survival following I/R, Lin⁻ BMCs were injected intramuscularly 0, 2, 7, and 14 days after I/R, and bioluminescent imaging was performed for up to 28 days after cell injections. To assess their ability to improve muscle regeneration, intramuscular injections were performed 2 days after injury, and in vivo muscle function was assessed 14 days later. RESULTS Lin⁻ BMCs survived throughout the study period regardless of the timing of delivery. Intramuscular injection of Lin⁻ BMCs did not improve maximal isometric torque (300 Hz); however, both saline-injected and Lin⁻ BMC-injected muscles exhibited an increase in the twitch-tetanus ratio, suggesting that damage incurred with the intramuscular injections may have had deleterious consequences for functional recovery. CONCLUSION Although BMCs injected intramuscularly survived cell transplantation, they failed to improve muscle function following I/R. The ability of BMCs to persist in injured muscle following I/R lends to the possibility that with further development, their full potential can be realized.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The protective effect of bone marrow-derived mesenchymal stem cells in liver ischemia/reperfusion injury via down-regulation of miR-370

Objective(s): Liver transplantation is the most important therapy for end-stage liver disease and ischemia reperfusion (I/R) injury is indeed a risk factor for hepatic failure after grafting. The role of miRNAs in I/R is not completely understood. The aim of this study was to investigate the potential protective role of the mesenchymal stem cells (MSCs) and ischemic pr...

متن کامل

Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy

Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after transplantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal ste...

متن کامل

Adenosine A2A receptor activation reduces infarct size in the isolated, perfused mouse heart by inhibiting resident cardiac mast cell degranulation.

Mast cells are found in the heart and contribute to reperfusion injury following myocardial ischemia. Since the activation of A2A adenosine receptors (A2AARs) inhibits reperfusion injury, we hypothesized that ATL146e (a selective A2AAR agonist) might protect hearts in part by reducing cardiac mast cell degranulation. Hearts were isolated from five groups of congenic mice: A2AAR+/+ mice, A2AAR(-...

متن کامل

The Development of Macrophage-Mediated Cell Therapy to Improve Skeletal Muscle Function after Injury.

Skeletal muscle regeneration following acute injury is a multi-step process involving complex changes in tissue microenvironment. Macrophages (MPs) are one of the key cell types involved in orchestration and modulation of the repair process. Multiple studies highlight the essential role of MPs in the control of the myogenic program and inflammatory response during skeletal muscle regeneration. ...

متن کامل

Colchicine protects rat skeletal muscle from ischemia/reperfusion injury by suppressing oxidative stress and inflammation

Objective(s): Neutrophils play an important role in ischemia/reperfusion (IR) induced skeletal muscle injury. Microtubules are required for neutrophil activation in response to various stimuli. This study aimed to investigate the effects of colchicine, a microtubule-disrupting agent, on skeletal muscle IR injury in a rat hindlimb ischemia model. Materials and Methods: Twenty-one Sprague-Dawley ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of trauma and acute care surgery

دوره 75 2 Suppl 2  شماره 

صفحات  -

تاریخ انتشار 2013